
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221045985

What Is a Test Case? Revisiting the Software Test Case Concept

Conference Paper in Communications in Computer and Information Science · September 2009

DOI: 10.1007/978-3-642-04133-4_2 · Source: DBLP

CITATION

1
READS

952

2 authors:

Some of the authors of this publication are also working on these related projects:

Learning outcomes in project oriented environments View project

Software Quality View project

Dani Almog

Shamoon College of Engineering

8 PUBLICATIONS 21 CITATIONS

SEE PROFILE

Tsipi Heart

Ono Academic College

58 PUBLICATIONS 938 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dani Almog on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221045985_What_Is_a_Test_Case_Revisiting_the_Software_Test_Case_Concept?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221045985_What_Is_a_Test_Case_Revisiting_the_Software_Test_Case_Concept?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Learning-outcomes-in-project-oriented-environments?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Quality-15?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dani_Almog?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dani_Almog?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shamoon-College-of-Engineering?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dani_Almog?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsipi_Heart?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsipi_Heart?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ono_Academic_College?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsipi_Heart?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dani_Almog?enrichId=rgreq-a36b3aaef8d32b8056eb47343f5ed7e7-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NTk4NTtBUzoxMDQyMTcwMzMzMTQzMDVAMTQwMTg1ODY4NTI5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

What is a Test Case? Revisiting the Software Test Case Concept

What is a Test Case? Revisiting the Software Test Case Concept

Dani Almog1 and Dr. Tsipi Heart2

The Department of Industrial Engineering and Management

Ben Gurion University of the Negev
1
almog.dani@gmail.com,

2
heart@bgu.ac.il

Abstract. Since the 1980s the term "Test Case" (TC) has been recognized as a building block for describing

testing items, widely used as a work unit, metric and documentation entity. In light of the centrality of the TC

concept in testing processes, the questions this paper attempts to answer are: What are the uses of TC in

software testing? Is there a general, commonly agreed-upon definition of a TC? If not, what are the

implications of this situation?

This article reviews and explores the history, use and definitions of TCs, showing that while extensively used

in research and practice, there is no one formal agreed upon definition of a TC. In this paper we point at

undesirable implications of this situation, suggest four criteria for a 'good' TC definition, and discuss the

benefits accrued from such a definition. We conclude by urging the academic and professional community to

formalize a TC definition for the benefits of the industry and its customers, and strongly believe that this

review paves the way to articulating a formal TC definition. Such a definition, when widely accepted, will

clarify some of the ambiguity currently associated with TC interpretation, hence with software testing

assessment which relies on TCs as metrics. Furthermore, a formal definition can advance automation of TC

generation and management.

1 Introduction

A research initiated by the US Department of Commerce [1] estimated an annual economic damage

equivalent to $20 – $52 billion as a result of inadequate software testing infrastructure and processes. The

authors classified two primary categories of damages: damages users incurred because of software malfunction,

and damages associated with software modification, fixing and re-testing. Although published some six years

ago, there is a sound indication that the situation has not significantly improved. Hence, the alarming magnitude

of damages caused by inappropriate software testing merits closer investigation into plausible reasons and

explanations to this undesirable situation in a quest for solutions and improvement.

Because software testing is a broad topic which cannot be grasped in a single work, this study focuses on one

specific aspect of the software testing domain – the test case (TC), since TC is a cornerstone in software testing

processes, and because, as shown later on, it is posited that inconsistencies in TC definitions and use throughout

the testing process is perhaps a cause for fundamental flaws.

The questions this paper attempts to answer are: What is the role of TC in software testing? Is there a general

agreement about the definition of TC? If not, what are the consequences of this situation?

We believe that answering these questions will clarify some of the ambiguity currently associated with TC

interpretation, and pave the way to articulating a formal TC definition. If and when widely accepted, it can

relieve some of the ambiguity associated with software testing metrics that commonly relies on counting TCs.

Furthermore, an appropriate formal definition can drive automation of TC generation and management.

Therefore, this work is clearly a contribution to software process improvement by dealing with an important

aspect of testing – the test case.

The rest of the paper is organized as follows: common software testing processes and practices are briefly

described in the next chapter, showing the importance of testing processes in software engineering, and the TC

as the testing building block. We then describe the literature survey methodology employed. Next, several

definitions for TCs are presented as a result of the literature survey, showing the conceptual variability of these

definitions. We then proceed to a review of the literature discussing the centrality of TCs in testing processes,

concluding with a suggestion of dimensions by which a TC definition can be evaluated, as well as an evaluation

of existing definitions based on these dimensions. The paper concludes with a discussion of the implications of

the lack of a unified approach to TCs and whether there is a need to re-define this term.

2 Common practices in software testing

In the following section the importance of testing in terms of its substantive ro

the one hand, and of its complexity, on the other hand, is briefly presented. This background clarifies the merit in

further looking into TC use and definitions, since TCs are building blocks of testing.

The testing effort undoubtedly comprises a significant portion of the

early research conducted at NASA

programmers, and 37% of their actual work days (Figure 1).

Fig. 1. Distribution o

A more recent study conducted in Alberta, Canada

testing resources in terms of the ratio o

allocated around two developers to one tester (~50%), whereas 35% invested much less personnel resources in

testing (five developers to one tester, ~20%).

positive correlation between software development process maturity and the degree of investment in software

testing – around 35% of the overall investment

Testing tasks have been traditionally

Execution, and 3) Verification: verify results against expected outcomes and report

often performed sequentially as in structured software development process models, demanding rather equal

resource investment. Recently, however, there is a

reasons [7]. One reason is the growing popularity of new software development models and techniques, such as

agile methods, service oriented architecture (SOA), and test driven development (TDD), all three indicating

testing processes that somewhat deviate from the

models, testing automation has matured and is now more prevalent, potentially easing the execution phase.

Finally, verification and validation processes become more complex due to the growing complexi

developed applications and the data units involved. For example, growing complexity can be attributed to data

representation simultaneously using various techniques as databases, XML files, encryption, compression,

coding, dynamic data location, etc. Consequently, a deeper understanding of the data structure and

characteristics is required during testing, as well as more sophisticated tools and processes.

In light of the growing complexity of the testing process, Bach

“any testing to the extent that the tester actively controls the design of the tests as those tests are performed and

uses information gained while testing to design new and better tests” (p. 2). This methodology addresses the

assertion that complete testing preparation is unlikely at an initial phase of the testing process. Thus, Kaner

explained the advantages of exploratory testing in allowing testers to learn while they test, to get more

sophisticated as they learn, interpret and desi

market, the variety of uses of the product, the risks, and the mistakes that are likely to be made by the humans

who wrote the code. Under exploratory testing the test plan evolves during

rather than pre-planned before the actual complexity of the product is realized. This realm, however, might be

practically problematic when having to pre

Evidently, there is a broad agreement that testing is a complex task, hence difficult to estimate and quantify.

What is a Test Case? Revisiting the Software Test Case

Common practices in software testing

In the following section the importance of testing in terms of its substantive role in software development on

the one hand, and of its complexity, on the other hand, is briefly presented. This background clarifies the merit in

further looking into TC use and definitions, since TCs are building blocks of testing.

doubtedly comprises a significant portion of the programming effort

early research conducted at NASA [2] found that testing efforts comprise 30% of the time invested by

programmers, and 37% of their actual work days (Figure 1).

Distribution of the effort among programmers' tasks (NASA) [2]

nt study conducted in Alberta, Canada [3] identified large variance among projects regarding

testing resources in terms of the ratio of developers to testers, showing that about 50% of the studied projects

allocated around two developers to one tester (~50%), whereas 35% invested much less personnel resources in

testing (five developers to one tester, ~20%). Other studies generally support these findings,

positive correlation between software development process maturity and the degree of investment in software

around 35% of the overall investment [4, 5].

een traditionally classified into three phases [6]: 1) Preparation: plan, design, construct, 2)

and 3) Verification: verify results against expected outcomes and report. These three stages were

often performed sequentially as in structured software development process models, demanding rather equal

resource investment. Recently, however, there is a tendency to change this structured model due to several

. One reason is the growing popularity of new software development models and techniques, such as

agile methods, service oriented architecture (SOA), and test driven development (TDD), all three indicating

testing processes that somewhat deviate from the structured process models. Along changes in development

models, testing automation has matured and is now more prevalent, potentially easing the execution phase.

Finally, verification and validation processes become more complex due to the growing complexi

developed applications and the data units involved. For example, growing complexity can be attributed to data

representation simultaneously using various techniques as databases, XML files, encryption, compression,

etc. Consequently, a deeper understanding of the data structure and

characteristics is required during testing, as well as more sophisticated tools and processes.

In light of the growing complexity of the testing process, Bach [8] advocated exploratory testing, def

“any testing to the extent that the tester actively controls the design of the tests as those tests are performed and

uses information gained while testing to design new and better tests” (p. 2). This methodology addresses the

te testing preparation is unlikely at an initial phase of the testing process. Thus, Kaner

explained the advantages of exploratory testing in allowing testers to learn while they test, to get more

sophisticated as they learn, interpret and design their tests differently as they learn more about the product, the

market, the variety of uses of the product, the risks, and the mistakes that are likely to be made by the humans

nder exploratory testing the test plan evolves during the test development and execution,

planned before the actual complexity of the product is realized. This realm, however, might be

practically problematic when having to pre-estimate testing efforts as part of the overall project estimatio

Evidently, there is a broad agreement that testing is a complex task, hence difficult to estimate and quantify.

Software Test Case Concept

le in software development on

the one hand, and of its complexity, on the other hand, is briefly presented. This background clarifies the merit in

programming effort. For example, an

found that testing efforts comprise 30% of the time invested by

identified large variance among projects regarding

about 50% of the studied projects

allocated around two developers to one tester (~50%), whereas 35% invested much less personnel resources in

findings, substantiating the

positive correlation between software development process maturity and the degree of investment in software

1) Preparation: plan, design, construct, 2)

. These three stages were

often performed sequentially as in structured software development process models, demanding rather equal

model due to several

. One reason is the growing popularity of new software development models and techniques, such as

agile methods, service oriented architecture (SOA), and test driven development (TDD), all three indicating

structured process models. Along changes in development

models, testing automation has matured and is now more prevalent, potentially easing the execution phase.

Finally, verification and validation processes become more complex due to the growing complexity of the

developed applications and the data units involved. For example, growing complexity can be attributed to data

representation simultaneously using various techniques as databases, XML files, encryption, compression,

etc. Consequently, a deeper understanding of the data structure and

exploratory testing, defined as

“any testing to the extent that the tester actively controls the design of the tests as those tests are performed and

uses information gained while testing to design new and better tests” (p. 2). This methodology addresses the

te testing preparation is unlikely at an initial phase of the testing process. Thus, Kaner [9]

explained the advantages of exploratory testing in allowing testers to learn while they test, to get more

gn their tests differently as they learn more about the product, the

market, the variety of uses of the product, the risks, and the mistakes that are likely to be made by the humans

the test development and execution,

planned before the actual complexity of the product is realized. This realm, however, might be

estimate testing efforts as part of the overall project estimation.

Evidently, there is a broad agreement that testing is a complex task, hence difficult to estimate and quantify. In-

What is a Test Case? Revisiting the Software Test Case Concept

depth examination of various testing processes and techniques is beyond the scope of this work, instead, we

focus on the common building block of all software testing techniques – the TC. Thus, in order to better

understand the problem at hand, we next bring a review of the literature, elaborating on the single concept

common to all testing processes and techniques – the TC.

3 Methodology

The following methodology has been employed in order to identify the literature relevant for this review. First,

Google and Google Scholar were used as search engines to find sources with the keywords: "software testing",

"software reliability", "testing methodology", "black box testing", and "test case". This first search effort yielded

about 150 papers and about 25 books dated 1982 onwards, which were scanned for relevance by reading their

abstracts. Looking at citations appearing in the elicited papers implied that there is merit in further expanding the

search by using the following keywords: "TDD", "SOA", "agile", "software cost estimation", "software project

management", "testing projects", "test case generation", and "testing automation". This search yielded about 100

additional papers and about 10 books spanning the years 1980 till 2008.

A similar search has been conducted on leading journals and conferences, for example relevant IEEE and

EMSE journals and ICST conferences that directly or indirectly included topics represented by the above

keywords. These three rounds of literature search resulted in a database of about 300 papers, books, and

conference proceedings. Endnote 9.0 has been used as the reference management tool, where research notes have

been added for classification purposes.

This reference database has been then reviewed, and each reference has been classified to sub-topics as in

Table 4 (a paper could be related to more than one sub-topic), as well as whether or not it included a formal

definition of a TC. Those papers which contained such a definition were further categorized based on the nature

of the definition, as appears in Table 3.

While classifying the papers, additional references and topics were searched by scanning their reference list,

which resulted in about 40 additional papers, bringing the total number of papers and books reviewed to about

340, of which 267 directly referred to TCs.

4 Literature review

4.1 Historical overview of the TC concept

The TC concept appeared as a central concept underlying testing processes since the beginning of formal

software testing, for example as part of the Systematic Test & Evaluation Processes (STEP) model [10], which

defined feedback loops between software development and testing. Three sources for TC generation were

identified: directly from the requirements, stemming from performance requirements, and based on system's

design [10]. A formal definition of a TC, however, was not included. In a study published in the same year,

Ostrand & Balcer]11[suggested to build TCs as a collection of test frames and test scripts, yet these two terms

were not precisely defined although TCs were perceived to be measureable by their size. Weyuker [12] brought a

quite different approach when she maintained that TCs are formed by decision statements, and recognized that

the more the number of decision statements in the tested code, the more complex is the TC, recommending to

limit the average number of decision statements tested by one TC to 3.6. Interestingly, in spite of frequent use of

the term TC in her paper (76 times) it was not formally defined.

The centrality of the TC is evident in the work of Harrold, Gupta & Soffa [13], who used TCs as the basis of a

methodology to minimize testing efforts, realizing that the testing process could in fact become indefinite

because of the lack of indicators for absence of errors. They developed a structured methodology to identify

redundant TCs and merge them into TC suites or execute these TCs in pairs. In this work TCs were identified as

TC requirements assuming that TCs stem from requirements. Adopting an analogous line of thinking,

Rosenberg, Hammer & Huffman [14] maintained that TC content should reflect the requirements, and therefore

should be controlled by a TC coverage matrix, which maps requirements to TCs, aimed at optimizing the testing

effort. Clearly, TCs and the resulting coverage matrix tend to become more complex relative to the number and

complexity of the requirements. In an effort to handle this growing complexity, Iberle [15] developed a TC

hierarchy methodology at HP labs, where the test plan was formed by test groups based on the system's

functionality as defined by the requirements, the system's design and other sources, and each test group is then

What is a Test Case? Revisiting the Software Test Case Concept

further detailed into tests composed of TCs in the leaves (Figure 2). Here again, the TC was the fundamental

building block of the testing process, yet no formal definition was provided.

Fig. 2. Test plan hierarchy [15]

Aichernig [16] was among the few researchers who attempted a formal TC definition by developing a

mathematical description of a TC, although he suggested that TCs were in fact abstractions of the requirements,

or "highly abstract contracts" (p. 6). Aichernig's mathematical approach to TC definition (brought later on in

section 4.4) was aimed at advancing a formal language essential for automation of TC generation.

In the first chapter of his book "Software Testing: A Craftsman Approach" Jorgensen [17] reviewed the TC

concept, noting that the TC was the key to the success of the testing process. He distinguished between TCs

identified by the functional requirements (functional testing) and TCs identified by the software structure

(structural testing).

In an attempt at identifying "what is a good test case?" Kaner [18] maintained that a good TC was one that

gave the required information which was the objective of the particular test. He counted several testing

objectives each requiring a different type of TCs, and acknowledged that TCs greatly vary and hence using them

as metrics is problematic: "Also, under this definition, the metrics that report the number of test cases are

meaningless. What do you do with a set of 20 single-variable tests that were interesting a few weeks ago but now

should be retired or merged into a combination? Suppose you create a combination test that includes the 20 tests.

Should the metric report this one test, twenty tests, or twenty one?" (p. 2).

Later works by Grindal and Colleagues [19, 20] included a review of mechanisms to render software testing

more efficient and effective, heavily relying on TC selection and execution, since they maintained that testing is

"loosely considered to be the dynamic execution of test cases" [19, p. 2]. An interesting approach has been

adopted by the aerospace industry where the Conformance and Fault Injection (CoFI) methodology has been

used [21, 22]. Under this methodology, TCs were differentiated between those that aim at confirming the

appropriate behavior of the tested product and those that are aimed at creating faulty situations. The authors

suggested a structured approach to the definition of the two types of testing, and as a result, a systematic creation

of the relevant TCs.

Because of the centrality of the TC in the testing process, and due to the significant effort invested in

designing and generating TCs especially in large or complex projects, several studies have elaborated on TC

management processes and tools. For example, Desai [23] from Bell Laboratories described a tool which

managed the configuration and inventory of TCs separately from the testing tasks, compatible with the IEEE 829

standard. A later work described a TC management and tracking tool, where the term 'test item' is used in a

context similar to TC [24], making the TC concept even more ambiguous in the absence of a formal definition.

The need to automate the generation and management of TCs was demonstrated in Jorgensen's [25] work, where

he noted that it took 141,306 TCs to test version 5.0.1 of Acrobat Reader. It is noteworthy that Jorgensen did not

define a TC unit in this work as the basis for the counting method although the term was extensively used in this

commentary.

The likely variability among TCs has been acknowledged by Nagappan [26] who developed the Software

Testing and Reliability Early Warning (STREW) metric suite for software testing effort estimation, using TCs as

What is a Test Case? Revisiting the Software Test Case Concept

one of the model metrics. He warned, however, that using TCs as a metric might not be well defined since

"….one developer might write fewer test cases each with multiple asserts checking various conditions. Another

developer might test the same conditions by writing many more test cases, each with only one assert" (p. 39).

This variability among TCs should be taken into account when defining effort estimation model parameters.

Table 1 shows that TCs can greatly vary, for example by complexity, size (whether containing many asserts or

one assert), or by origin (requirements or other), hence cannot be unified as indicating a singular metric.

Rating Very Low Defect Density Very High Defect Density

Test Cases Few test cases Many test cases

Test case asserts Asserts that only exercise

"success" behavior of the

product or do not adequately

cover the functionality of the

product

Asserts that exercise various

behaviors of each requirements

Requirements Test cases do not relate to

requirements

At least one test case per

requirement

Code coverage Minimal coverage of important

functions

100% coverage

Table 1. Software rating – defect density, [27]

A further warning in this regard has been advocated by Hoffman [28], who pointed at the possibility that

definitions of TCs, as well as their number and content, might change during the course of the project,

jeopardizing the validity of metrics based on these TCs.

4.2 TC use and generation in modern software development

Not only have TCs been important in traditional software development processes, they also continue to play

an important role in more modern software development methodologies and techniques.

Similar to the more traditional software development environments, the TC is a fundamental entity in testing

software in the object oriented environment. For example, Binder [29] first developed a methodology for TC

generation in an object oriented environment, by introducing the 'testing points' concept, a mechanism used to

define test requirements and the relevant TCs. Later in his book Binder suggested to define the TC as a method

thereby including the test itself as part of the design of the objects.

Agile software development methods have quite revamped traditional testing concepts, particularly the

division between testers and developers [30], since on-going testing is one of the principles guiding development

of very small and frequent software iterations common to the agile methodology. Nonetheless, the centrality of

the TC concept has not changed as a result of utilizing these methodologies, although the test planning method

has.

TDD or TDM are software development methods that advocate writing TCs prior to the actual software

development to assure developing software that is testable [31, 32]. Here, the role of the TC is even magnified,

yet evidence about the effectiveness of this method is still mixed [31, 33].

Service oriented architecture (SOA) has introduced new testing challenges [34] demonstrated for example by

the inclusion of a testing mechanism in the SOA infrastructure delivered by IBM [35]. Especially challenging is

testing composed and complex services that require new testing methods [36], making estimation of testing

scope and effort more difficult. The recent move to SOA has raised the interest in software componentization

[37, 38] and component-based testing, adding additional ambiguity to the TC concept.

Some research has focused on automatic TC generation, a process requiring TC formalization [39-42]. As use

cases largely reflect functional requirements in the UML environment, Nebut, Fleurey, Le Traon & Jיzיquel [43]

suggested TC generation from use cases, after incorporating the contract element they claim is a component

essential for translating a use case into a TC. Likewise, test objectives and sequence diagrams also serve as

sources for TC generation. Generally, several works have developed techniques to generate TCs from UML

diagrams, termed Model Based Testing (MBT), mostly based on transforming use cases and states into TCs [44,

45]. Although the attempts to automate TC generation resulted in some level of formalization, the difficulties

pertaining to the TC concept were not solved by this mechanism, since use cases and scripts all suffer from the

same fuzziness of definition regarding size, complexity, number of states, etc.

What is a Test Case? Revisiting the Software Test Case Concept

4.3 TCs as metrics

During the testing phase, there is a need to manage and control the process, by measuring its size, complexity,

and quality, as a minimum. This, however, is easier said than done, due to reasons brought in the previous

sections. Thus, for example when using the Goal – Questions – Metrics (GQM) method 1developed by V. Basili

and D. Weis for measurement development, Management strives to find metrics to answer questions such as

'how long would it take to complete testing?', or 'how much resources should be allocated to testing?', aimed at

achieving managerial goals such as appropriate resource allocation and adhering to schedules. Measures

developed to answer these questions often rely on number of TCs, for example "total number of planned

white/black box test cases run to completion, number of planned integration tests run to completion, or number

of unplanned test cases required during the test phase" [26, p. 15]. The Software Testing Reliability Early

Warning Model for Java (STREW-J) developed by Nagappan [26] to estimate expected problems as a means to

estimate testing efforts used at least two estimation parameters that are based on number of TCs: 1) number of

test cases divided by source lines of code (R1) as an indication of whether there are too few test cases written to

test the body of source code; and 2) number of test case divided by number of requirements (R2) as an

indication of the thoroughness of testing relative to the requirements. Other TC-based metrics recommended as

reflecting the status of the testing project were number or percent of TCs run since testing started, number or

percent of TCs run since the last status report, number of percent of TCs that passed since the beginning of the

testing project, number or percent of TCs passed since the last status report, number or percent of failed TCs,

total number of open issues or TCs not run [46].

Elsewhere, eight of thirteen reports recommended as tools for testing monitoring and control were based on

TCs count, completion status, results etc. [47]. Further, these same authors suggested eighteen indicators to

monitor the project status, eleven of which are based on tests or TCs. Two real-world examples of using TCs as

the unit for testing progress monitoring are presented in Figures 4 and 5. Figure 4 illustrates NASA's

recommendation for test execution monitoring, and Figure 5 was drawn from a real-world project at a large

telecom enterprise, where three different projects were tracked based on the number of TCs not yet executed

(test backlog). Evidently, not only all TCs were equally counted, but also TCs from different projects were

compared under the same unit of analysis, regardless of potential variance among TCs stemming from the

dissimilarity of the projects.

Fig. 3. Testing execution progress monitoring, [48]

1 We thank the reviewer for suggesting using GQM as a metric-generation methodology

0

20

40

60

80

100

120

140

T
e

s
ts

System Test Phase

Tests
Executed

Tests
Passed

Tests
Planned

What is a Test Case? Revisiting the Software Test Case Concept

Fig. 4. Testing execution progress monitoring

In the next example (Table 2), number of tests was recommended as a metric to track and control testing

execution. Since tests are composed of TCs it is reasonable to assume that this metric implies actually counting

TCs from different software features ignoring their likely differences.

Project online trade Date: 5/23/2007
Feature
tested

Total
Tested

Complete

%
Complete

Success

%
Success

Open Acct 46 46 100 41 89

Sell Order 36 25 69 25 69

Buy Order 19 17 89 12 63

……

Totals 395 320 81 311 79

Table 2. Number of tests is used as a metric for testing monitoring and control [46]

Similarly, IBM published reporting metrics for testing the software developed by various vendors under

IBM's supervision for the Sydney Olympic Games, all based on counting number of TCs [49]: 1) Number of test

cases defined, 2) Number of test cases executed, 3) Number of test cases with failures but no associated defect

records 4) The percentage of test cases attempted, used as an indicator of progress relative to the completeness of

the planned test effort.

TCs has also been used for testing effort estimation in few works where overall project effort has been

estimated based on distinctive estimation of the various development phases [50-52]. In an attempt to overcome

the problem of counting TCs of various size and complexity Nageswaran [53] suggested using function points

where the number of TCs can be determined by the function points estimate for the corresponding effort.

Following this approach Aranha & Borba [54] presented a scheme for collecting execution points for calculating

and estimating testing efforts. It should be noted, however, that none of these works formally defined the TC

term although.

Evidently, TCs have been used as metrics for testing effort estimation, as well as for testing monitoring and

control. Common to most of the techniques suggested in these works is the reliance on counting TCs, with only

minimal reference to the fact that TCs lack a standard definition and tend to greatly differ.

What is a Test Case? Revisiting the Software Test Case Concept

4.4 Test case definitions

As stated earlier, a thorough literature survey has been conducted in order to study where and how TCs are

defined. Interestingly, in spite of a plethora of research about software quality assurance, few works formally

define a TC, although most use this term quite intensively. Perhaps most notable is the fact that an explicit

definition of a TC could not be located in the 2004 version of SWEBOK. Rather, the TC appears as an integral

part of the general software testing definition:" Software testing consists of the dynamic verification of the

behavior of a program on a finite set of test cases, suitably selected from the usually infinite executions domain,

against the expected behavior" [55, p. 5-1]. Nonetheless, several definitions have been retrieved, classified into

four dominant approaches: 1) input-process-output-objectives, 2) states and transitions, 3) contractual approach,

and 4) other definitions.
The input-process-output-objectives perspective conceptualizes a TC as a set of inputs into a pre-defined
process, aimed at yielding a desired output, based on the test objective. The states and transitions approach
considers a TC as a set of transition patterns among states. The contractual approach defines TC as a contract
since the outcomes of pre-defined conditions are fully defined. Finally, there are several other definitions
stemming from various contexts. Table 3 lists examples of definitions in each category. The implications of this
variability are discussed next.

What is a Test Case? Revisiting the Software Test Case Concept

Category Definition Source

Input-Process-

Output-

Objectives

"A set of conditions or variables under which a tester will determine if an application or a

software system meets specifications…. It may take many test cases to determine that a

software program or system is functioning correctly"

www.wikipedia.org

 "A test case is the combination of test data and oracle information to determine the validity

of the test"

[56, p. 9]

 "A set of test inputs, execution conditions, and expected results developed for a particular

objective, such as to exercise a particular program path or to verify compliance with a

specific requirement"

[24, p. 187]

 "Test case is a test vector consisting of a set of test inputs and the corresponding test outputs

(pre and post conditional assertions)"

[45, p. 2]

 "Test Case is an identified set of information including inputs and expected outputs

associated with a particular program behavior"

[17, p. 7]

 "A test case is a finite structure of input and expected output: a pair of input and output in

the case of deterministic transformative systems, a sequence of input and output in the case

of deterministic reactive systems, and a tree or a graph in the case of non-deterministic

reactive systems

[32, p. 2]

States and

Transitions

"A sequence of one or more subtests executed as a sequence because the outcome and/or

final state of one subtest is the input and/or initial state of the next. The word ‘test’ is used to

include subtests, tests properties, and test suites".

[57, p. 13]

 "A test case specifies the pretest state of the implementation under test (IUT) and its

environment, the test inputs or conditions, and the expected result. The expected result

specifies what the IUT should produce from the test inputs. This specification includes

messages generated by the IUT, exceptions, returned values, and resultant state of the IUT

and its environment. Test cases may also specify initial and resulting conditions for other

objects that constitute the IUT and its environment.”

[29, p. 47]

 "Test case is composed of several components: test case values, prefix values, verify values,

exit commands and expected outputs"

[58, p. 28]

 "Test Case is a verification of some aspect of the System Under Test (SUT). Test Case for

any feature of any SUT can be defined as follows:

Perform verification, Vv

Which may be preceded by a sequence of actions, Aa

Which may require a set of data, Dd

[59, p. 51]

What is a Test Case? Revisiting the Software Test Case Concept

Table 3. Test Case Definitons and Sources

Which may require preconditions, Pp

All of which runs in environment, Ee

Hence, a Test Case, Tt = Ee Pp Dd Aa Vv"

Contract "Test-cases common in software engineering are in fact contracts (highly abstract

contracts)… However, our result that test-cases are abstractions holds for general contract

statements involving user inter-action".

[16, p. 8]

 "a form of contract between a service provider and a service user" [60, p. 2]

Other "An empirical frame of reference, rather than a theoretical one" [61, p.359]

 "…test case is a question that you ask of the program. The point of running the test is to gain

information, for example, whether the program will pass or fail the test"

[18, p. 2]

 "A test idea is a brief statement of something that should be tested. For example, if you're

testing a square root function, one idea for a test would be ‘test a number less than zero’.

The idea is to check if the code handles an error case"

[18, p. 2]

 "a specific set of attribute values that tests a given logical situation" [62, p. 3]

 "a test case can be considered as a predator while a mutant program is analogous to a prey" [63]

What is a Test Case? Revisiting the Software Test Case Concept

5 Discussion

The TC serves as the backbone of testing processes, and is a fundamental unit for test planning, execution,

monitoring and control. It is also used as a common metric in quantifying testing effort, scope and status.

Furthermore, there is a growing quest to automate TC generation, execution and management. Nonetheless

and quite interestingly, there is no consensus regarding the formal definition of a TC.

From the papers reviewed for this work it is evident that the TC concept is frequently used in various

contexts, yet infrequently formally defined (Table 4). Please note that numbers in Tables 4 and 5 do not add

up because papers could be classified to more than one sub-topic.

Total

Automation/

Generation

Metrics

UML/MBT

OO/SOA
Manage-

ment
Cost/ROI

Estimations
Topic

267 44 25 46 69 86 TCs Papers

Reviewed

38 (14%) 14 (32%) 4 (16%) 26 (57%) 19 (28%) 11 (13%) Formal TC

Definition

Table 4. TC-related papers, definitions and contexts used

Table 4 shows that 267 reviewed papers referring to TCs covered five different topics, yet only in 38

papers (14%) a formal definition of TC was attempted, particularly in studies focusing on OO related issues

and TC automation and Management. It is thus valid to wonder why only 14% of authors bothered to

formally define the central concept of their work in spite of heavily using this term (some mention TC more

than a hundred). Thus, in the 38 papers where TC was defined, various definitions were employed

representing all four definition categories: input-process-output-objective, states & transitions, contract, and

other. It is thus interesting to examine whether there is an association between the definition category used

and the specific context (Table 5). For example, it could be expected that works in the UML/MBT/OO

context would use states & transitions definitions that stem from the OO world. This, however, could not be

substantiated by the present literature review, as those few authors who have used the TC definition in their

OO-related work chose definitions from all categories (Table 5). Moreover, no author has articulated the

reasons for choosing one definition or another. As seen in Table 5, authors using TCs in the context of

OO/MBT/UML more frequently used the input-process-output-objective (termed hereinafter process-based

for brevity sake) definitions rather than the more naturally related states & transitions definitions, which turn

out as the most popular definition category. Evidently, no correlation could be deduced between the

definition category and the context, possibly attesting to the arbitrary choice of the former.

12 Dani Almog1 and Dr. Tsipi Heart2

Context Definition category

 Process States Contract Other Defined

Cost/ROI 6 1 1 3 11

Management / Project 11 4 1 3 19

OO/ MBT/UML/SOA 12 6 2 6 26

Measurements/Metrics 1 1 1 1 4

Automation/Regression 10 1 1 2 14

Total 18 11 2 8 38

Table 5. TC definition distribution by research context

The lack of formal TC definition and the fact that most studies do not include any definition raise several

questions: Is such a definition required? Are there deficiencies in the existing definitions? What are the

implications of the lack of a formal definition?

We maintain that a formal definition is indeed required, encouraged by the fact that in real-world testing

of life-threatening projects a formal definition is an important part of the testing guidelines. For example,

based on the IEEE standard, chapter 6 of a manual for testing safety applications in a nuclear reactor

environment greatly elaborates on TC types, definitions, content, and documentation [64]. Four types of TCs

are specified: 1) verification TC, 2) validation TC, 3) demonstration TC, 4) general suitability TC. Each TC

is defined by a general description including reference number, geometry, flow features, experimental data,

existing simulations, related experiments, and rating of the challenge the test case poses. These details should

be accompanied by further documentation describing the test environment for each TC.

It is suggested that a formal TC definition could render several benefits if satisfying at least four

requirements: 1) Unambiguousness: such TCs would be uniformly understood by the various stakeholders

participating in a testing endeavor, 2) Generalizability: TCs would hold upon transforming from one platform

to another, from one testing domain to another, and so on, 3) Quantifiability: only quantifiable TCs would be

sensibly measured, and 4) Automatability: some might argue that this trait is an outcome of the above three

characteristics, yet we chose to explicitly indicate it as a desirable feature because of its importance.

Unambiguousness ensures a unified view shared by all professionals involved in software testing

regardless of their prior experience, background, testing environments, methods and techniques. This trait is

important because it will ease the current 'Tower of Babylon' dominating the testing world, and rive sharing

expertise among various testing schools and perceptions. Generalizability ensures maintaining testing assets

and investments along various testing efforts, namely, TC generation tools and techniques would be valid in

different testing environments. Quantifiability is clearly beneficial because of the importance of the TC as a

fundamental metric. Currently, measurements involving counting TCs are clearly inconsistent. Finally, there

is no need to explain the benefits rendered by the ability to automate TC generation, execution and

management. Several attributes are mandatory for TC automation, among them is a formal definition of the

TC structure.

Examining the existing definitions by the four categories illustrates the deficiencies in each type. The

input-process-output-objective definitions are generally unambiguous, but not necessarily generalizable. For

example, non-functional requirements, such as testing a user experience, are difficult to define using this type

What is a Test Case? Revisiting the Software Test Case Concept 13

of definition. Likewise, the 'process' part of the TC can vary in size and complexity hence difficult to

quantify and measure. For instance, a process can be as simple as 'check for existence of a certain value' or

quite complex as 'create a customer order'. Consequently, this type of definition is problematic to automate.

The state & transitions definitions may satisfy the unambiguousness and quantifiability traits but are hardly

generalizable since they stem from the state-machine world, therefore not transferrable to other testing

domains. For example states and transitions that are a result of dynamic environmental conditions and data

would be rather impossible to define as a finite number of states and transitions. TCs defined as States &

Transitions, however, are quite convenient to quantify and automate due to their origination in the state-

machine domain. The contract group of definitions is becoming popular, mainly in SOA platforms, yet these

definitions clearly violate the unambiguousness criterion. For example, Aichernig [16] defined a test as a

contract between the user and the software provider, Mikhailova et al. [65] defined testing as a contract

between the system under test and its environment, and Bruno et al. [66] thought it was a contract ensuring

service compliance between releases. Clearly, only a formal definition of the contract, such as the one

attempted by Aichernig [16] is unambiguous. For similar reasons it cannot be generalized, quantifiable or

automatable unless formalized. Finally, it is quite obvious that the other definitions do not meet most of the

above requirements.

We maintain that the absence of a formal definition for TCs causes test planning, execution, and

monitoring malfunctioning. For example, reporting testing effort estimation or testing progress by number of

executed TCs is clearly misleading, often resulting in projects not meeting time and budget constraints, or in

inadequate software quality. Testing automation efforts are likewise contingent upon formal definition of

TCs, hence its absence is possibly one of the barriers to a broader diffusion of automation tools. These

shortcomings are quite likely among the causes for the huge annual economic damage as a result of

inadequate software testing infrastructure and processes reported by the US Department of Commerce [1].

Hence, further work towards a formal TC definition that meets the above requirements is advocated.

6 Conclusions

TC is a cornerstone for planning, designing, and monitoring testing projects, as well as a means for work,

effort and cost estimation. This work demonstrated not only the centrality of the TC but also the variance

among TC definitions. Further, the official professional taxonomies, for example those presented in the joint

ISO-IEEE Guide to the Software Engineering Body of Knowledge – SWEBOK does not explicitly define

TC.

This situation is possibly a barrier to improving the testing infrastructure leading to higher software

quality, therefore decreasing the enormous resulting damage. It is suggested that establishing a formal,

unambiguous, generic, quantifiable and structural definition for a TC would be a significant contribution to

the world of software testing, and software quality in general. Such a definition would pave the way to

standard TC generation techniques, as well as to measurement and evaluation tools.

Referring to Kaner's [18] question "what is a good Test case?" and his assertion that "good TC is one that

gives the required information", we see benefits in formalizing a unified, well defined and structured TC

entity that satisfies all the above dimensions. We suggest pursuing, determining and proposing an improved

and comprehensive definition of a test Case.

14 Dani Almog1 and Dr. Tsipi Heart2

7 References

[1] Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Testing. National Institute of Standards

and Technology (2002).

[2] Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., and Waligora, S.: The software engineering laboratory:

an operational software experience factory. In: Proceedings of the 14th international conference on Software

engineering. ACM New York, NY, USA (1992).

[3] Geras, A.M., Smith, M.R., and Miller, J.: A survey of software testing practices in alberta. Canadian Journal of

Electrical and Computer Engineering 29(3), 183-191 (2004).

[4] Grindal, M., Offutt, J., and Mellin, J.: On the Testing Maturity of Software Producing Organizations. In: Proceedings

of the Testing: Academic and Industrial Conference-Practice and Research Techniques TAIC PART (2006).

[5] Ng, S.P., Murnane, T., Reed, K., Grant, D., and Chen, T.Y.: A Preliminary Survey on Software Testing Practices in

Australia. In: Software Engineering Conference (2004).

[6] Illes, T., Herrmann, A., Paech, B., and Rockert, J.: Criteria for Software Testing Tool Evaluation. A Task Oriented

View. In: Proceedings of the 3rd World Congress for Software Quality (2005).

[7] Almog, D.: Verification Points for Better Testing Efficiency. In: StarEast SQE (2007).

[8] Bach, J.: Exploratory Testing Explained. http://www.satisfice.com/articles/et-article.pdf.

[9] Kaner, C.: The Ongoing Revolution in Software Testing. In: Software Test & Performance Conference (2004).

[10] Gelperin, D. and Hetzel, B.: The Growth of Software Testing. Communications of the ACM, 31(6), 687-695 (1988).

[11] Ostrand, T.J. and Balcer, M.J.: The Category-Partition Method for Specifying and Generating Functional Tests.

Commun ACM, 31(6), 676-686 (1988).

[12] Weyuker, E.J.: The Cost of Data Flow Testing: An Empirical Study. IEEE Transactions on Software Engineering,

16(2), 121-128 (1990).

[13] Harrold, M.J., Rajiv, G., and Mary Lou, S.: A Methodology for Controlling the Size of a Test Suite. ACM Trans

Softw Eng Methodol, 2(3), 270-285 (1993).

[14] Rosenberg, L., Hammer, T.F., and Huffman, L.L.: Requirements, Testing and Metrics. In: 15th Annual Pacific

Northwest Software Quality Conference (1998).

[15] Iberle, K.: Divide and Conquer: Making Sense of Test Planning. In: The International Conference on Software

Testing, Analysis and Review, STARWEST (1999).

[16] Aichernig, B.K.: Test-Case Calculation through Abstraction. In: International Symposium of Formal Methods

Springer (2001).

[17] Jorgensen, P.: Software Testing: A Craftsman's Approach, CRC Press (2002).

[18] Kaner, C.: What Is a Good Test Case? In: Star East (2003).

[19] Grindal, M., Offutt, J., and Andler, S.F.: Combination Testing Strategies: a Survey. Software Testing Verification

and Reliability, 15(3), 167 (2005).

[20] Grindal, M., Lindstrצm, B., Offutt, J., and Andler, S.F.: An Evaluation of Combination Strategies for Test Case

Selection. Empirical Software Engineering, 11(4), 583-611 (2006).

[21] Ambrosio, A., Mattiello-Francisco, F., Santiago, V., Silva, W., and Martins, E. Designing Fault Injection

Experiments Using State-Based Model to Test a Space Software, in Dependable Computing, LNCS Volume

4746. pp. 170-178, Springer: Berlin / Heidelberg (2007).

[22] Ambrosio, A.M., Martins, E., Vijaykumar, N.L., and de Carvalho, S.V.: Systematic Generation of Test and Fault

Cases for Space Application Validation. In: DASIA: Data Systems in Aerospace. European Space Agency

(2005).

[23] Desai, H.D.: Test Case Management System (TCMS). In: IEEE Conference Global Telecommunications

GLOBECOM: 'Communications: The Global Bridge' (1994).

What is a Test Case? Revisiting the Software Test Case Concept 15

[24] Craig, R.D. and Jaskiel, S.P.: Systematic Software Testing, Artech House (2002).

[25] Jorgensen. Testing with Hostile Data Streams. Acm Sigsoft Software Engineering Notes, 28(2), 1 (2003).

[26] Nagappan, N. A Software Testing and Reliability Early Warning (STREW) Metric Suite, Thesis: Computer Science,

North Carolina University (2005)

[27] Sherriff, M., Boehm, B.W., Williams, L., and Nagappan, N.: An Empirical Process for Building and Validating

Software Engineering Parametric Models. North Carolina State Univeristy CSC-TR-2005-45, October, 19

(2005).

[28] Hoffman, D.: The Darker Side of Metrics. In: Conference of the Association of Software Testing (CAST) (2006).

[29] Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley Professional (2000).

[30] Talby, D., Hazzan, O., Dubinsky, Y., and Keren, A.: Agile Software Testing in a Large-Scale Project. IEEE

Software, 30-37 (2006).

[31] Beck, K.: Test-driven Development: By Example, Addison-Wesley Professional (2003).

[32] Utting, M., Legeard, B., and Pretschner, A.: A Taxonomy of Model-based Testing. Dept. of Computer Science,

University of Waikato Hamilton, New Zealand (2006).

[33] Bohnet, R. and Meszaros, G.: Test-Driven Porting. In: Proceedings of the Agile Development Conference (2005).

[34] Lewis, G.A., Morris, E., Simanta, S., and Wrage, L.: Common Misconceptions about Service-Oriented Architecture.

In: Proceedings of the Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based

Software Systems (2007).

[35] Hiebert, D., Klaedtke, R.A., Lowery, E., Nartovich, A., Raut, N., and Sandberg, M.J.: Building SOA-based

Solutions for IBM System i Platform. IBM (2007).

[36] Karam, M., Safa, H., and Artail, H.: An Abstract Workflow-Based Framework for Testing Composed Web Services.

In: IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (2007).

[37] Rehman, M.J., Jabeen, F., Bertolino, A., and Polini, A.: Testing Software Components for Integration: A Survey of

Issues and Techniques. Software Testing, Verification & Reliability, 17(2), 95-133 (2007).

[38] Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Software, 15(5), 54-59 (1998).

[39] Cai, K.Y., Zhao, L., Hu, H., and Jiang, C.H.: On the Test Case Definition for GUI Testing. In: Fifth International

Conference on Quality Software (QSIC) (2005).

[40] Boujarwah, A.S. and Saleh, K.: Compiler Test Case Generation Methods: A Survey and Assessment. Information

and Software Technology, 39(9), 617-625 (1997).

[41] Calam, J.R., Ioustinova, N., and Pol, J.: Towards Automatic Generation of Parameterized Test Cases from

Abstractions. Technical Report SEN-E0602, Centrum voor Wiskunde en Informatica (2006).

[42] Byers, D., Engstrom, M., and Kamkar, M.: The Design of a Test Case Definition Language. Automated and

Algorithmic Debugging, 69-78 (1997).

[43] Nebut, C., Fleurey, F., Le Traon, Y., and Jezequel, J.M.: Automatic Test Generation: A Use Case Driven Approach.

IEEE Transactions on Software Engineering, 140-155 (2006).

[44] Prasanna, M., Sivanandam, S.N., Venkatesan, R., and Sundarrajan, R.: A Survey on Automatic Test Case

Generation. Academic Open Internet Journal, 15 (2005).

[45] Coulter, A.C.: Graybox Software Testing Methodology: Embedded Software Testing Technique. In: Proceedings of

the18th Digital Avionics Systems Conference (1999).

[46] Craig, R.: Measurement and Metrics for Test Managers. In: STAR East. SQE (2007).

[47] Kaner, C.: Measurement Issues and Software Testing (2001).

[48] Landis, L., Waligora, S., and McGarry, F.: Recommended Approach to Software Development, in Software

Engineering Laboratory Series. NASA. 81-305 (1992).

[49] Bassin, K., Biyani, S., and Santhanam, P.: Metrics to Evaluate Vendor-Developed Software Based on Test Case

Execution Results. IBM Systems Journal, 41(1), 13-30 (2002).

16 Dani Almog1 and Dr. Tsipi Heart2

[50] Jorgensen, M. and Shepperd, M.: A Systematic Review of Software Development Cost Estimation Studies. IEEE

Transactions on Software Engineering, 33(1), 33-53 (2007).

[51] Binkley, D.: Semantics Guided Regression Test Cost Reduction. IEEE Transactions on Software Engineering, 23(8),

498-516 (1997).

[52] Leung, H.K.N. and White, L.: Insights into Regression Testing [software testing]. In: Conference on Software

Maintenance (1989).

[53] Nageswaran, S.: Test Effort Estimation Using Use Case Points. In: 14th International Internet & Software Quality

Week (2001).

[54] Aranha, E. and Borba, P.: An Estimation Model for Test Execution Effort. International Symposium on Empirical

Software Engineering and Measurement (ESEM 2007), (2007).

[55] Abran, A., Bourque, P., Dupuis, R., and Moore, J., W. . Guide to the Software Engineering Body of Knowledge -

SWEBOK, ed. A. Alain, et al., IEEE Press (2004).

[56] Stocks, P.A. and Carrington, D.A.: Test Templates: A Specification-Based Testing Framework. In: Proceedings of

the 15th International Conference on Software Engineering. IEEE Computer Society Press (1993).

[57] Beizer, B.: Black-Box Testing: Techniques for Functional Testing of Software and Systems, John Wiley & Sons, Inc.

(1995).

[58] Offutt, J. and Abdurazik, A.: Generating tests from UML specifications. Proc Second International Conference on

the Unified Modeling Language, (1999).

[59] Taylor, C.M.: EPDAV – A Model for Test Case Definition. In: Conference of the Association of Software Testing

(2006).

[60] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., and Mazza, V.: Using Test Cases as Contract to Ensure Service

Compliance Across Releases. LECTURE NOTES IN COMPUTER SCIENCE, 3826, 87 (2005).

[61] Kaner, C., Falk, J.L., and Nguyen, H.Q.: Testing Computer Software, John Wiley & Sons, Inc. New York, NY, USA

(1999).

[62] Maletic, J.I., Soliman, K.S., Moreno, M.A., and Mercer, W.M.: Identification of Test Cases from Business

Requirements of Software Systems. In: American Conference on Information Systems AMCIS (1999).

[63] Baudry, B., Fleurey, F., Jezequel, J.M., and Le Traon, Y.: Genes and Bacteria for Automatic Test Cases

Optimization in the .NET Environment. In: Proceedings of the13th International Symposium on Software

Reliability Engineering, ISSRE (2002).

[64] Menter, F.: CFD Best Practice Guidelines for CFD Code Validation for Reactor- Safety Applications. CFX

Germany (2002).

[65] Mikhailova, A., Doche, M., and Butler, M.: Contracts for Scenario-Based Testing of Object-Oriented Programs.

(2002).

[66] Bruno, M., Canfora, G., Di Penta, M., Esposito, G., and Mazza, V. Using Test Cases as Contract to Ensure Service

Compliance Across Releases, in Service-Oriented Computing, LNCS Volume 3826. pp. 87, Springer: Berlin /

Heidelberg (2005).

View publication statsView publication stats

https://www.researchgate.net/publication/221045985

